o
    &?e1                     @   s   d Z ddlZddlmZ ddlmZ dddZdddZdd	d
Z	dddZ
dd Zdd Zdd ZdddZdd ZdddZdddZdS ) a  Function of unitary fourier transform (uft) and utilities

This module implements the unitary fourier transform, also known as
the ortho-normal transform. It is especially useful for convolution
[1], as it respects the Parseval equality. The value of the null
frequency is equal to

.. math::  \frac{1}{\sqrt{n}} \sum_i x_i

so the Fourier transform has the same energy as the original image
(see ``image_quad_norm`` function). The transform is applied from the
last axis for performance (assuming a C-order array input).

References
----------
.. [1] B. R. Hunt "A matrix theory proof of the discrete convolution
       theorem", IEEE Trans. on Audio and Electroacoustics,
       vol. au-19, no. 4, pp. 285-288, dec. 1971

    N   )_supported_float_typec                 C   *   |du r| j }tj| t| ddd}|S )aI  N-dimensional unitary Fourier transform.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.

    Returns
    -------
    outarray : ndarray (same shape than inarray)
        The unitary N-D Fourier transform of ``inarray``.

    Examples
    --------
    >>> input = np.ones((3, 3, 3))
    >>> output = ufftn(input)
    >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
    True
    >>> output.shape
    (3, 3, 3)
    Nr   orthoaxesZnorm)ndimfftfftnrangeinarraydimoutarray r   X/home/www/facesmatcher.com/pyenv/lib/python3.10/site-packages/skimage/restoration/uft.pyufftn      r   c                 C   r   )aZ  N-dimensional unitary inverse Fourier transform.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.

    Returns
    -------
    outarray : ndarray (same shape than inarray)
        The unitary inverse N-D Fourier transform of ``inarray``.

    Examples
    --------
    >>> input = np.ones((3, 3, 3))
    >>> output = uifftn(input)
    >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
    True
    >>> output.shape
    (3, 3, 3)
    Nr   r   r   )r   r	   Zifftnr   r   r   r   r   uifftn=   r   r   c                 C   r   )a  N-dimensional real unitary Fourier transform.

    This transform considers the Hermitian property of the transform on
    real-valued input.

    Parameters
    ----------
    inarray : ndarray, shape (M, N, ..., P)
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.

    Returns
    -------
    outarray : ndarray, shape (M, N, ..., P / 2 + 1)
        The unitary N-D real Fourier transform of ``inarray``.

    Notes
    -----
    The ``urfft`` functions assume an input array of real
    values. Consequently, the output has a Hermitian property and
    redundant values are not computed or returned.

    Examples
    --------
    >>> input = np.ones((5, 5, 5))
    >>> output = urfftn(input)
    >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
    True
    >>> output.shape
    (5, 5, 3)
    Nr   r   r   )r   r	   rfftnr   r   r   r   r   urfftn\   s   "r   c                 C   s,   |du r| j }tj| |t| ddd}|S )aQ  N-dimensional inverse real unitary Fourier transform.

    This transform considers the Hermitian property of the transform
    from complex to real input.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.
    shape : tuple of int, optional
        The shape of the output. The shape of ``rfft`` is ambiguous in
        case of odd-valued input shape. In this case, this parameter
        should be provided. See ``np.fft.irfftn``.

    Returns
    -------
    outarray : ndarray
        The unitary N-D inverse real Fourier transform of ``inarray``.

    Notes
    -----
    The ``uirfft`` function assumes that the output array is
    real-valued. Consequently, the input is assumed to have a Hermitian
    property and redundant values are implicit.

    Examples
    --------
    >>> input = np.ones((5, 5, 5))
    >>> output = uirfftn(urfftn(input), shape=input.shape)
    >>> np.allclose(input, output)
    True
    >>> output.shape
    (5, 5, 5)
    Nr   r   r   )r   r	   Zirfftnr   )r   r   shaper   r   r   r   uirfftn   s   &r   c                 C   
   t | dS )ap  2-dimensional unitary Fourier transform.

    Compute the Fourier transform on the last 2 axes.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.

    Returns
    -------
    outarray : ndarray (same shape as inarray)
        The unitary 2-D Fourier transform of ``inarray``.

    See Also
    --------
    uifft2, ufftn, urfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = ufft2(input)
    >>> np.allclose(np.sum(input[1, ...]) / np.sqrt(input[1, ...].size),
    ...             output[1, 0, 0])
    True
    >>> output.shape
    (10, 128, 128)
    r   )r   r   r   r   r   ufft2      
r   c                 C   r   )a  2-dimensional inverse unitary Fourier transform.

    Compute the inverse Fourier transform on the last 2 axes.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.

    Returns
    -------
    outarray : ndarray (same shape as inarray)
        The unitary 2-D inverse Fourier transform of ``inarray``.

    See Also
    --------
    uifft2, uifftn, uirfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = uifft2(input)
    >>> np.allclose(np.sum(input[1, ...]) / np.sqrt(input[1, ...].size),
    ...             output[0, 0, 0])
    True
    >>> output.shape
    (10, 128, 128)
    r   )r   r   r   r   r   uifft2   r   r   c                 C   r   )a  2-dimensional real unitary Fourier transform

    Compute the real Fourier transform on the last 2 axes. This
    transform considers the Hermitian property of the transform from
    complex to real-valued input.

    Parameters
    ----------
    inarray : ndarray, shape (M, N, ..., P)
        The array to transform.

    Returns
    -------
    outarray : ndarray, shape (M, N, ..., 2 * (P - 1))
        The unitary 2-D real Fourier transform of ``inarray``.

    See Also
    --------
    ufft2, ufftn, urfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = urfft2(input)
    >>> np.allclose(np.sum(input[1,...]) / np.sqrt(input[1,...].size),
    ...             output[1, 0, 0])
    True
    >>> output.shape
    (10, 128, 65)
    r   )r   r   r   r   r   urfft2   s   
r   c                 C   s   t | d|dS )a  2-dimensional inverse real unitary Fourier transform.

    Compute the real inverse Fourier transform on the last 2 axes.
    This transform considers the Hermitian property of the transform
    from complex to real-valued input.

    Parameters
    ----------
    inarray : ndarray, shape (M, N, ..., P)
        The array to transform.
    shape : tuple of int, optional
        The shape of the output. The shape of ``rfft`` is ambiguous in
        case of odd-valued input shape. In this case, this parameter
        should be provided. See ``np.fft.irfftn``.

    Returns
    -------
    outarray : ndarray, shape (M, N, ..., 2 * (P - 1))
        The unitary 2-D inverse real Fourier transform of ``inarray``.

    See Also
    --------
    urfft2, uifftn, uirfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = uirfftn(urfftn(input), shape=input.shape)
    >>> np.allclose(input, output)
    True
    >>> output.shape
    (10, 128, 128)
    r   )r   )r   )r   r   r   r   r   uirfft2  s   "r   c                 C   sx   | j d | j d kr+dtjtjt| d dddd tjt| d d dd S tjtjt| d ddddS )aE  Return the quadratic norm of images in Fourier space.

    This function detects whether the input image satisfies the
    Hermitian property.

    Parameters
    ----------
    inarray : ndarray
        Input image. The image data should reside in the final two
        axes.

    Returns
    -------
    norm : float
        The quadratic norm of ``inarray``.

    Examples
    --------
    >>> input = np.ones((5, 5))
    >>> image_quad_norm(ufft2(input)) == np.sum(np.abs(input)**2)
    True
    >>> image_quad_norm(ufft2(input)) == image_quad_norm(urfft2(input))
    True
    r   )axis).r   )r   npsumabsr   r   r   r   image_quad_norm7  s
   $"r&   Tc                 C   s   |s| j }t| j}tj||d}| |tdd | jD < t| jD ]\}}|| j | kr=tj|t	t
|d  |d}q"|rCtjntj}||t| dd}	t|tj}
|	j|
dd	S )
a  Compute the transfer function of an impulse response (IR).

    This function makes the necessary correct zero-padding, zero
    convention, correct fft2, etc... to compute the transfer function
    of IR. To use with unitary Fourier transform for the signal (ufftn
    or equivalent).

    Parameters
    ----------
    imp_resp : ndarray
        The impulse responses.
    shape : tuple of int
        A tuple of integer corresponding to the target shape of the
        transfer function.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.
    is_real : boolean, optional
       If True (default), imp_resp is supposed real and the Hermitian property
       is used with rfftn Fourier transform.

    Returns
    -------
    y : complex ndarray
       The transfer function of shape ``shape``.

    See Also
    --------
    ufftn, uifftn, urfftn, uirfftn

    Examples
    --------
    >>> np.all(np.array([[4, 0], [0, 0]]) == ir2tf(np.ones((2, 2)), (2, 2)))
    True
    >>> ir2tf(np.ones((2, 2)), (512, 512)).shape == (512, 257)
    True
    >>> ir2tf(np.ones((2, 2)), (512, 512), is_real=False).shape == (512, 512)
    True

    Notes
    -----
    The input array can be composed of multiple-dimensional IR with
    an arbitrary number of IR. The individual IR must be accessed
    through the first axes. The last ``dim`` axes contain the space
    definition.
    )dtypec                 S   s   g | ]}t d |qS )r   )slice).0sr   r   r   
<listcomp>  s    zir2tf.<locals>.<listcomp>r   )shiftr"   r   )r   F)copy)r   r   r'   r#   zerostupler   	enumerateZrollintfloorr	   r   r
   r   Zpromote_typesZ	complex64Zastype)Zimp_respr   r   is_realZirpadded_dtypeZirpaddedr"   Z	axis_sizefuncoutZ
cplx_dtyper   r   r   ir2tfX  s    /
r6   c                    s   t dg|  }t| D ]2 ttddg  tdg tddg|   d   }t g d fddt| D ||< qd|  |tddf|  < t|||d	|fS )
a8  Return the transfer function of the Laplacian.

    Laplacian is the second order difference, on row and column.

    Parameters
    ----------
    ndim : int
        The dimension of the Laplacian.
    shape : tuple
        The support on which to compute the transfer function.
    is_real : boolean, optional
       If True (default), imp_resp is assumed to be real-valued and
       the Hermitian property is used with rfftn Fourier transform
       to return the transfer function.

    Returns
    -------
    tf : array_like, complex
        The transfer function.
    impr : array_like, real
        The Laplacian.

    Examples
    --------
    >>> tf, ir = laplacian(2, (32, 32))
    >>> np.all(ir == np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]]))
    True
    >>> np.all(tf == ir2tf(ir, (32, 32)))
    True
          r   N)      g        r9   c                    s   g | ]
}| kr
d ndqS )r    r8   r   )r)   ir   r   r   r+     s    zlaplacian.<locals>.<listcomp>g       @)r3   )r#   r.   r   r/   r(   arrayZreshaper6   )r   r   r3   Zimpridxr   r;   r   	laplacian  s   r>   )N)NN)NT)T)__doc__numpyr#   Z	scipy.fftr	   Z_shared.utilsr   r   r   r   r   r   r   r   r   r&   r6   r>   r   r   r   r   <module>   s    



(,  
"%
!E