o
    hR                  ,   @   s  d dl mZmZmZ d dlZd dlmZ ddlmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ ddgZG dd deZd	d
e de de de de
 de d e_dee dee dee dee dee dee dee dee dededee ef dee ef dee ef de de dededed ef&d!d"Z!dee dee dee dee dee dee dee dee dededee ef dee ef dee ef de de dededed ef&d#d$Z"dee dee dee dee dee dee dee dee dedede de dee ef de de dededed ed%df(d&d'Z#ee!d(		)	)				)	)d-dee dee dee dee dee dee d*ee deded+ee dee dee ded edede de dee ef de de def*d,dZ$dS ).    )castOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_device_dtype_check_for_fused_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc
_fused_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_params_doc_stack_if_compiling
_to_scalar_use_grad_for_differentiable_view_as_real
DeviceDictDeviceDtypeDict	OptimizerParamsTAdamadamc                       s   e Zd Z					ddddddddded	eeef d
eeeef eeef f dededede	e dededede	e def fddZ
 fddZdd ZedddZ  ZS )r   MbP?g?g+?:0yE>r   FN)foreachmaximize
capturabledifferentiablefuseddecoupled_weight_decayparamslrbetasepsweight_decayamsgradr    r!   r"   r#   r$   r%   c                   s  t |tr|r|	std| dkrtdd|ks"td| d|ks-td| d|d   kr9dk sCn td	|d  d|d   krOdk sYn td
|d  d|ksdtd| t |d trrt |d tst |d trt |d tstdt |d tr|	s|rtd|d  dkrtdt |d tr|	s|rtd|d  dkrtdt||||||||	|
||d}t || |r|
rtdd| _	|rtdd S d S )NElr as a Tensor is not supported for capturable=False and foreach=Truer   Tensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: z0betas must be either both floats or both TensorszKbetas[0] as a Tensor is not supported for capturable=False and foreach=Truez!Tensor betas[0] must be 1-elementzKbetas[1] as a Tensor is not supported for capturable=False and foreach=Truez!Tensor betas[1] must be 1-element)r'   r(   r)   r*   r+   r!   r    r"   r#   r$   r%   z)`fused` does not support `differentiable`Tz0`fused` and `foreach` cannot be `True` together.)

isinstancer   
ValueErrornumelfloatdictsuper__init__RuntimeErrorZ_step_supports_amp_scaling)selfr&   r'   r(   r)   r*   r+   r    r!   r"   r#   r$   r%   defaults	__class__ V/home/www/facesmatcher.com/frenv_anti/lib/python3.10/site-packages/torch/optim/adam.pyr6   #   s|   
zAdam.__init__c                    s   t  | | jD ]k}|dd |dd |dd  |dd |dd |dd |dd }|d	 D ]:}| j|g }t|d
krst|d sst	|d }|d s]|d ritj
|t|d|jdntj
|t d|d< q9q	d S )Nr+   Fr!   r    r"   r#   r%   r$   r&   r   stepZis_fuseddtypedevicerA   )r5   __setstate__param_groups
setdefaultstategetlentorch	is_tensorr3   tensorr   rB   )r8   rG   groupr$   pZp_stateZstep_valr:   r<   r=   rD   r   s4   
zAdam.__setstate__c                 C   s~  d}|d D ]}	|	j d ur|t|	O }||	 |	j jr!td||	j  | j|	 }
t|
dkr||d r:t|	 |d sB|d rPtj	dt
|d d|	jd	ntjd
t
 d|
d< tj|	tjd|
d< tj|	tjd|
d< |d r|tj|	tjd|
d< ||
d  ||
d  |d r||
d  |d r|
d jrtd|d rt|d r|d std||
d  q|S )NFr&   zJAdam does not support sparse gradients, please consider SparseAdam insteadr   r$   r"   r<   r?   r@   r.   rC   r>   )Zmemory_formatexp_avg
exp_avg_sqr+   max_exp_avg_sqr#   zB`requires_grad` is not supported for `step` in differentiable moder    r'   r,   )gradrJ   
is_complexappendZ	is_sparser7   rG   rI   r	   Zzerosr   rB   rL   Z
zeros_likeZpreserve_formatrequires_gradrK   )r8   rM   params_with_gradgradsexp_avgsexp_avg_sqsmax_exp_avg_sqsstate_stepshas_complexrN   rG   r<   r<   r=   _init_group   sl   








zAdam._init_groupc                 C   s   |    d}|dur!t  | }W d   n1 sw   Y  | jD ]V}g }g }g }g }g }g }	|d \}
}| |||||||	}t||||||	f|d ||
||d |d |d |d |d |d	 |d
 |d t| ddt| dd|d d q$|S )zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr(   r+   r'   r*   r)   r!   r    r"   r#   r$   
grad_scale	found_infr%   )r+   r\   beta1beta2r'   r*   r)   r!   r    r"   r#   r$   r^   r_   r%   )Z _cuda_graph_capture_health_checkrJ   Zenable_gradrE   r]   r   getattr)r8   closureZlossrM   rV   rW   rX   rY   rZ   r[   r`   ra   r\   r<   r<   r=   r>      s`   





z	Adam.step)r   r   r   r   FN)__name__
__module____qualname__r   r   r3   r   tupleboolr   r6   rD   r]   r   r>   __classcell__r<   r<   r:   r=   r   "   sT    	
	
OKaf  Implements Adam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)}          \\
            &\hspace{13mm}      \lambda \text{ (weight decay)},  \: \textit{amsgrad},
                \:\textit{maximize},  \: \epsilon \text{ (epsilon)}                              \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0\leftarrow 0 \text{ (second moment)},\: v_0^{max}\leftarrow 0          \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{5mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{10mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{5mm}\textbf{if} \: \lambda \neq 0                                           \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{5mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{5mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{5mm}\textbf{if} \: amsgrad                                                  \\
            &\hspace{10mm} v_t^{max} \leftarrow \mathrm{max}(v_{t-1}^{max},v_t)                  \\
            &\hspace{10mm}\widehat{v_t} \leftarrow v_t^{max}/\big(1-\beta_2^t \big)              \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}\widehat{v_t} \leftarrow   v_t/\big(1-\beta_2^t \big)                  \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/
                \big(\sqrt{\widehat{v_t}} + \epsilon \big)                                       \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
    z
    Args:
        a  
        lr (float, Tensor, optional): learning rate (default: 1e-3). A tensor LR
            is not yet supported for all our implementations. Please use a float
            LR if you are not also specifying fused=True or capturable=True.
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): if True, this optimizer is
            equivalent to AdamW and the algorithm will not accumulate weight
            decay in the momentum nor variance. (default: False)
        amsgrad (bool, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False)
        z	
        a=  
    .. Note::
        A prototype implementation of Adam and AdamW for MPS supports `torch.float32` and `torch.float16`.
    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ

    r&   rW   rX   rY   rZ   r[   r^   r_   r+   r\   r`   ra   r'   r*   r)   r!   r"   r#   r%   c          '      C   sr  |d u r|d u s
J t j r%t|tsJ t|
tsJ t|ts$J nt|}t|
tr7|
j|
jf|
i}nd }t	| D ]\}}|sH|| n||  }|| }|| }|| }t j
 sy|ryt }|jj|jjkrq|jj|v syJ d| d|d7 }|dkr|r|d||   n"|rt|tr|jr|| |}q|j||d}n|j||d}t |rt |}t |}t |}|rt || ||< t |}|j}|d ur|j}||f}||vr|
j||dd||< || }n|
}||d|  |r't|tr'|jr|jt |d| d q4||j||d| d	 n||j||d| d	 |s:|r|}|rZt|
trZ|
jrSd|
|   } q`d|
|  } nd|
|  } |r~t|tr~|jrwd||   }!qd||  }!nd||  }!||  }"|" }#|! }$|r|r||  }%n|| }%|| t |%| ||  |$|#  ||# }&n| |$|#  ||# }&|r|| |& q"|||& nEt|}d|
|  } d||  }!||  }"|!d
 }$|rt j|| ||| d ||  |$ |}&n	| |$ |}&|j||&|" d	 |r6t | | r6t || ||< q=d S )NIIf capturable=True, params and state_steps must be on supported devices: .r   r   alphaT)rB   rA   non_blocking)weight)value      ?)out) rJ   jitis_scriptingr0   r3   r   r   rB   rA   	enumeratecompileris_compilingr   typeZmul_rU   Zaddcmul_cloneaddrS   Zview_as_realtoZlerp_ZsquarenegsqrtZcopy_maximumZadd_Zaddcdiv_r   Zview_as_complex)'r&   rW   rX   rY   rZ   r[   r^   r_   r+   r\   r`   ra   r'   r*   r)   r!   r"   r#   r%   
beta1_dictiparamrR   rO   rP   Zstep_tcapturable_supported_devicesrB   rA   keydevice_beta1r>   bias_correction1bias_correction2	step_sizeZstep_size_negbias_correction2_sqrtrQ   denomr<   r<   r=   _single_tensor_adamY  s   










	

 r   c          +         s  t | dkrd S ttr|std dkrtdt tr2|s(td  dkr2tdttrG|s=td dkrGtdtj si|rit	d	d
t
fddt| |D siJ d d|d u rq|d u ssJ |ryJ dtt| |||||g}t trt jdkr j ind }| D ]\\}}}}}}}ttt |}ttt |}ttt |}ttt |}ttt |} |d j}!|d ur|!|vr j|!dd||!< |r||! n }"|	r|rttt |}#t|||||# nt|||| |rt|}tj s*| d jr*tj| tjddddd nt| d |dkrW|rCt|d|   n|rOtj|||d ntj|||d}t||d|"  t| ttjrxt|d }$d}%n|}$d }%t||$||% ~~$|rt | }&t| }'t |&d t |'d t!|' t"|& t#|& t$|' |&}(|'})|rttt |}#t%|#| t&|#}*nt&|}*t"|*|) t|*| t"|*|( t'|||* q fdd| D }&fdd| D }'t(fdd|&D }(dd |'D })|r+ttt |}#t%|#| t&|#}*nt&|}*t"|*|) t|*| t'|||*|( qd S )Nr   r,   r   r-   zHbeta1 as a Tensor is not supported for capturable=False and foreach=TruezTensor beta1 must be 1-elementzHbeta2 as a Tensor is not supported for capturable=False and foreach=TruezTensor beta2 must be 1-elementF)Zsupports_xlac                 3   s0    | ]\}}|j j|j jko|j j v V  qd S rd   )rB   ry   ).0rN   r>   )r   r<   r=   	<genexpr>T  s    

z%_multi_tensor_adam.<locals>.<genexpr>rk   rl   z#_foreach ops don't support autogradcpuTrB   ro   r/   )rB   rm   c                       g | ]
}d  t |  qS r   r   r   r>   )r`   r<   r=   
<listcomp>      z&_multi_tensor_adam.<locals>.<listcomp>c                    r   r   r   r   )ra   r<   r=   r     r   c                    s   g | ]} | d  qS )r<   r   bc)r'   r<   r=   r     s    c                 S   s   g | ]}|d  qS )rr   r<   r   r<   r<   r=   r     s    ))rI   r0   r   r7   r2   r1   rJ   rw   rx   r   allzipr   r   "_group_tensors_by_device_and_dtypestrrB   valuesr   listr|   r   Z_foreach_negZis_cpu_foreach_add_rL   Z_foreach_mul_Z_foreach_addZ_foreach_lerp_Z_foreach_mulZ_foreach_addcmul_Z_foreach_pow_foreach_sub_Z_foreach_neg_Z_foreach_div_Z_foreach_reciprocal_Z_foreach_sqrt_Z_foreach_maximum_Z_foreach_sqrtZ_foreach_addcdiv_r   )+r&   rW   rX   rY   rZ   r[   r^   r_   r+   r\   r`   ra   r'   r*   r)   r!   r"   r#   r%   grouped_tensorsr   device_params_device_grads_device_exp_avgs_device_exp_avg_sqs_Zdevice_max_exp_avg_sqs_device_state_steps__device_paramsdevice_gradsdevice_exp_avgsdevice_exp_avg_sqsdevice_state_stepsrB   r   device_max_exp_avg_sqsZscaled_device_gradsrq   r   r   r   r   Zexp_avg_sq_sqrtr<   )r`   ra   r   r'   r=   _multi_tensor_adam  s"  















 r   returnc          '      C   s  | sd S |r
t d|d ur|j|ini }|d ur|j|ini }t|tr1t|jdkr1|j|ind }t| |||||g}| D ]\\}}\\}}}}}}}tt	t |}tt	t |} tt	t |}!tt	t |}"tt	t |}#d\}$}%|d ur|
||j|dd}$|d ur|
||j|dd}%|d ur||vr|j|dd||< || }t|#d |stjntj}&|&|| |!|"||#|||
|||||$|%d |%d urt|#|%gt|#  qBd S )	Nz9Adam with fused=True does not support differentiable=Truer   )NNT)ro   r   r   )	r+   r'   r`   ra   r*   r)   r!   r^   r_   )r7   rB   r0   r   r   r   r   itemsr   r   rF   r|   rJ   r   Z_fused_adam_Z_fused_adamw_r   rI   )'r&   rW   rX   rY   rZ   r[   r^   r_   r+   r\   r`   ra   r'   r*   r)   r!   r"   r#   r%   Zgrad_scale_dictZfound_inf_dictZlr_dictr   rB   r   r   r   r   r   r   r   r   r   r   r   r   Zdevice_grad_scaleZdevice_found_inffuncr<   r<   r=   _fused_adam  s   $r   )Zsingle_tensor_fnFr    r$   c                C   s  |	du r|du rt | |dd\}}|rt|tr|sd}|	du r"d}	|du r(d}tj s:tdd |D s:td|rEtj	 rEtd|	rPtj	 rPtd|	rZtj	 sZt
}n|rdtj	 sdt}nt}|| |||||f|||||||||||
||d	 dS )
znFunctional API that performs Adam algorithm computation.

    See :class:`~torch.optim.Adam` for details.
    NF)Z	use_fusedc                 s   s    | ]	}t |tjV  qd S rd   )r0   rJ   r   )r   tr<   r<   r=   r     s    
zadam.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsz6torch.jit.script not supported with foreach optimizersz4torch.jit.script not supported with fused optimizers)r+   r\   r`   ra   r'   r*   r)   r!   r"   r#   r^   r_   r%   )r   r0   r   rJ   rw   rx   r   r7   rt   ru   r   r   r   )r&   rW   rX   rY   rZ   r[   r    r"   r#   r$   r^   r_   r\   r%   r+   r`   ra   r'   r*   r)   r!   r   r   r<   r<   r=   r   q  s^   #
)NFFNNNFF)%typingr   r   r   rJ   r   Z	optimizerr   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   __all__r   __doc__r   ri   r3   r   r   r   r   r<   r<   r<   r=   <module>   s  X r%G




 F




 t


`
	

