o
    hn}                     @   s  d dl Z d dlmZ d dlmZ d dlmZ d dlmZm	Z	m
Z
 d dlZd dlZd dlm  mZ d dlmZmZ d dlmZmZmZ d dlmZ d d	lmZmZ d d
lmZmZ d dlm Z  d dl!m"Z"m#Z# d dl$m%Z% g dZ&de'e(e(f de(de(de(de'e(e(f f
ddZ)de'e(e(f de(de*e'e(e(f  fddZ+de(de(dejfddZ,G dd dej-Z.G dd  d ej-Z/G d!d" d"ej-Z0G d#d$ d$ej-Z1G d%d& d&ej-Z2G d'd( d(ej-Z3G d)d* d*ej-Z4G d+d, d,ej-Z5G d-d. d.ej-Z6		/dCd0e(d1e*e( d2e*e( d3e7d4e(d5e(d6e
e d7e8d8ede6fd9d:Z9G d;d< d<eZ:e ed=e:j;fd>dd?d@d6e
e: d7e8d8ede6fdAdBZ<dS )D    N)OrderedDict)Sequence)partial)AnyCallableOptional)nnTensor)register_modelWeightsWeightsEnum)_IMAGENET_CATEGORIES)_ovewrite_named_paramhandle_legacy_interface)Conv2dNormActivationSqueezeExcitation)StochasticDepth)ImageClassificationInterpolationMode)_log_api_usage_once)MaxVitMaxVit_T_Weightsmaxvit_t
input_sizekernel_sizestridepaddingreturnc                 C   s8   | d | d|  | d | d | d|  | d fS )Nr          )r   r   r   r   r    r    _/home/www/facesmatcher.com/frenv_anti/lib/python3.10/site-packages/torchvision/models/maxvit.py_get_conv_output_shape   s   r"   n_blocksc                 C   s<   g }t | ddd}t|D ]}t |ddd}|| q|S )zQUtil function to check that the input size is correct for a MaxVit configuration.   r   r   )r"   rangeappend)r   r#   ZshapesZblock_input_shape_r    r    r!   _make_block_input_shapes!   s   r(   heightwidthc                 C   s   t t jt | t |gdd}t |d}|d d d d d f |d d d d d f  }|ddd }|d d d d df  | d 7  < |d d d d df  |d 7  < |d d d d df  d| d 9  < |dS )NZij)Zindexingr   r   r   )torchstackZmeshgridZarangeflattenpermute
contiguoussum)r)   r*   ZcoordsZcoords_flatZrelative_coordsr    r    r!   _get_relative_position_index+   s   $,""&
r2   c                       sp   e Zd ZdZ	ddedededededed	ejf d
ed	ejf deddf fddZ	de
de
fddZ  ZS )MBConva=  MBConv: Mobile Inverted Residual Bottleneck.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        expansion_ratio (float): Expansion ratio in the bottleneck.
        squeeze_ratio (float): Squeeze ratio in the SE Layer.
        stride (int): Stride of the depthwise convolution.
        activation_layer (Callable[..., nn.Module]): Activation function.
        norm_layer (Callable[..., nn.Module]): Normalization function.
        p_stochastic_dropout (float): Probability of stochastic depth.
            in_channelsout_channelsexpansion_ratiosqueeze_ratior   activation_layer.
norm_layerp_stochastic_dropoutr   Nc	                    s*  t    |  |dkp||k}	|	r2tj||ddddg}
|dkr+tjd|ddg|
 }
tj|
 | _nt | _t|| }t|| }|rMt	|dd| _
nt | _
t }|||d	< t||ddd
||d d|d< t||d|d|||d d	|d< t||tjd|d< tj||ddd|d< t|| _d S )Nr   T)r   r   biasr   r$   r   r   r   rowmodeZpre_normr   )r   r   r   r9   r:   inplaceZconv_a)r   r   r   r9   r:   groupsrA   Zconv_b)Z
activationZsqueeze_excitation)r5   r6   r   r<   Zconv_c)super__init__r   Conv2dZ	AvgPool2d
SequentialprojIdentityintr   stochastic_depthr   r   r   ZSiLUlayers)selfr5   r6   r7   r8   r   r9   r:   r;   Zshould_projrG   Zmid_channelsZsqz_channelsZ_layers	__class__r    r!   rD   D   sP   





zMBConv.__init__xc                 C   s"   |  |}| | |}|| S )z
        Args:
            x (Tensor): Input tensor with expected layout of [B, C, H, W].
        Returns:
            Tensor: Output tensor with expected layout of [B, C, H / stride, W / stride].
        )rG   rJ   rK   rL   rO   resr    r    r!   forward   s   
zMBConv.forward)r4   )__name__
__module____qualname____doc__rI   floatr   r   ModulerD   r	   rR   __classcell__r    r    rM   r!   r3   6   s.    	
=r3   c                       sT   e Zd ZdZdedededdf fddZdejfd	d
ZdedefddZ	  Z
S )$RelativePositionalMultiHeadAttentionzRelative Positional Multi-Head Attention.

    Args:
        feat_dim (int): Number of input features.
        head_dim (int): Number of features per head.
        max_seq_len (int): Maximum sequence length.
    feat_dimhead_dimmax_seq_lenr   Nc                    s   t    || dkrtd| d| || | _|| _tt|| _|| _	t
|| j| j d | _|d | _t
| j| j || _t
jtjd| j d d| j d  | jftjd| _| d	t| j| j tj
jj| jd
d d S )Nr   z
feat_dim: z  must be divisible by head_dim: r$   g      r   r   )Zdtyperelative_position_index{Gz?Zstd)rC   rD   
ValueErrorn_headsr\   rI   mathsqrtsizer]   r   Linearto_qkvscale_factormergeZ	parameter	Parameterr,   emptyZfloat32relative_position_bias_tableZregister_bufferr2   initZtrunc_normal_)rL   r[   r\   r]   rM   r    r!   rD      s   


,z-RelativePositionalMultiHeadAttention.__init__c                 C   s@   | j d}| j| | j| jd}|ddd }|dS )Nr+   r   r   r   )r^   viewrl   r]   r/   r0   Z	unsqueeze)rL   Z
bias_indexZrelative_biasr    r    r!   get_relative_positional_bias   s   
zARelativePositionalMultiHeadAttention.get_relative_positional_biasrO   c                 C   s  |j \}}}}| j| j}}| |}tj|ddd\}	}
}|	|||||ddddd}	|
|||||ddddd}
||||||ddddd}|
| j }
t	d|	|
}| 
 }tj|| dd}t	d	||}|ddddd||||}| |}|S )
z
        Args:
            x (Tensor): Input tensor with expected layout of [B, G, P, D].
        Returns:
            Tensor: Output tensor with expected layout of [B, G, P, D].
        r$   r+   )dimr   r   r      z!B G H I D, B G H J D -> B G H I Jz!B G H I J, B G H J D -> B G H I D)shaperb   r\   rg   r,   chunkreshaper/   rh   Zeinsumro   FZsoftmaxri   )rL   rO   BGPDHZDHZqkvqkvZdot_prodZpos_biasoutr    r    r!   rR      s   
   

z,RelativePositionalMultiHeadAttention.forward)rS   rT   rU   rV   rI   rD   r,   r	   ro   rR   rY   r    r    rM   r!   rZ      s    rZ   c                       sD   e Zd ZdZdededdf fddZdejdejfd	d
Z  Z	S )SwapAxeszPermute the axes of a tensor.abr   Nc                    s   t    || _|| _d S N)rC   rD   r   r   )rL   r   r   rM   r    r!   rD      s   

zSwapAxes.__init__rO   c                 C   s   t || j| j}|S r   )r,   Zswapaxesr   r   rP   r    r    r!   rR      s   zSwapAxes.forward)
rS   rT   rU   rV   rI   rD   r,   r	   rR   rY   r    r    rM   r!   r      s    r   c                       s8   e Zd ZdZd
 fddZdededefdd	Z  ZS )WindowPartitionzB
    Partition the input tensor into non-overlapping windows.
    r   Nc                       t    d S r   rC   rD   rL   rM   r    r!   rD         zWindowPartition.__init__rO   pc                 C   sf   |j \}}}}|}||||| ||| |}|dddddd}|||| ||  || |}|S )z
        Args:
            x (Tensor): Input tensor with expected layout of [B, C, H, W].
            p (int): Number of partitions.
        Returns:
            Tensor: Output tensor with expected layout of [B, H/P, W/P, P*P, C].
        r   r   rq   r$      r   rr   rt   r/   )rL   rO   r   rv   Crz   Wrx   r    r    r!   rR      s    zWindowPartition.forwardr   N	rS   rT   rU   rV   rD   r	   rI   rR   rY   r    r    rM   r!   r      s    r   c                
       s@   e Zd ZdZd fddZdededed	edef
d
dZ  ZS )WindowDepartitionzo
    Departition the input tensor of non-overlapping windows into a feature volume of layout [B, C, H, W].
    r   Nc                    r   r   r   r   rM   r    r!   rD     r   zWindowDepartition.__init__rO   r   h_partitionsw_partitionsc                 C   s`   |j \}}}}|}	||}
}|||
||	|	|}|dddddd}||||
|	 ||	 }|S )ar  
        Args:
            x (Tensor): Input tensor with expected layout of [B, (H/P * W/P), P*P, C].
            p (int): Number of partitions.
            h_partitions (int): Number of vertical partitions.
            w_partitions (int): Number of horizontal partitions.
        Returns:
            Tensor: Output tensor with expected layout of [B, C, H, W].
        r   r   r   r$   r   rq   r   )rL   rO   r   r   r   rv   rw   ZPPr   rx   ZHPZWPr    r    r!   rR     s   

zWindowDepartition.forwardr   r   r    r    rM   r!   r      s    &r   c                       s   e Zd ZdZdededededeeef deded	ej	f d
ed	ej	f de
de
de
ddf fddZdedefddZ  ZS )PartitionAttentionLayera  
    Layer for partitioning the input tensor into non-overlapping windows and applying attention to each window.

    Args:
        in_channels (int): Number of input channels.
        head_dim (int): Dimension of each attention head.
        partition_size (int): Size of the partitions.
        partition_type (str): Type of partitioning to use. Can be either "grid" or "window".
        grid_size (Tuple[int, int]): Size of the grid to partition the input tensor into.
        mlp_ratio (int): Ratio of the  feature size expansion in the MLP layer.
        activation_layer (Callable[..., nn.Module]): Activation function to use.
        norm_layer (Callable[..., nn.Module]): Normalization function to use.
        attention_dropout (float): Dropout probability for the attention layer.
        mlp_dropout (float): Dropout probability for the MLP layer.
        p_stochastic_dropout (float): Probability of dropping out a partition.
    r5   r\   partition_sizepartition_type	grid_size	mlp_ratior9   .r:   attention_dropoutmlp_dropoutr;   r   Nc              	      s(  t    || | _|| _|d | | _|| _|| _|dvr"td|dkr/|| j| _| _	n| j|| _| _	t
 | _t | _|dkrHtddnt | _|dkrVtddnt | _t||t|||d t|	| _tt|t||| | t|| |t|
| _t|d	d
| _d S )Nr   )gridwindowz0partition_type must be either 'grid' or 'window'r   r   r   r>   r?   )rC   rD   rb   r\   Zn_partitionsr   r   ra   r   gr   partition_opr   departition_opr   r   rH   partition_swapdepartition_swaprF   rZ   ZDropout
attn_layer	LayerNormrf   	mlp_layerr   stochastic_dropout)rL   r5   r\   r   r   r   r   r9   r:   r   r   r;   rM   r    r!   rD   -  s8   

		z PartitionAttentionLayer.__init__rO   c                 C   s   | j d | j | j d | j }}t| j d | j dko&| j d | j dkd| j | j | || j}| |}|| | | }|| | 	| }| 
|}| || j||}|S )z
        Args:
            x (Tensor): Input tensor with expected layout of [B, C, H, W].
        Returns:
            Tensor: Output tensor with expected layout of [B, C, H, W].
        r   r   z[Grid size must be divisible by partition size. Got grid size of {} and partition size of {})r   r   r,   Z_assertformatr   r   r   r   r   r   r   )rL   rO   ghZgwr    r    r!   rR   g  s   "
&

zPartitionAttentionLayer.forward)rS   rT   rU   rV   rI   strtupler   r   rX   rW   rD   r	   rR   rY   r    r    rM   r!   r     s8    
	
:r   c                       s   e Zd ZdZdededededededejf d	edejf d
edededededede	eef ddf fddZ
dedefddZ  ZS )MaxVitLayera  
    MaxVit layer consisting of a MBConv layer followed by a PartitionAttentionLayer with `window` and a PartitionAttentionLayer with `grid`.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        expansion_ratio (float): Expansion ratio in the bottleneck.
        squeeze_ratio (float): Squeeze ratio in the SE Layer.
        stride (int): Stride of the depthwise convolution.
        activation_layer (Callable[..., nn.Module]): Activation function.
        norm_layer (Callable[..., nn.Module]): Normalization function.
        head_dim (int): Dimension of the attention heads.
        mlp_ratio (int): Ratio of the MLP layer.
        mlp_dropout (float): Dropout probability for the MLP layer.
        attention_dropout (float): Dropout probability for the attention layer.
        p_stochastic_dropout (float): Probability of stochastic depth.
        partition_size (int): Size of the partitions.
        grid_size (Tuple[int, int]): Size of the input feature grid.
    r5   r6   r8   r7   r   r:   .r9   r\   r   r   r   r;   r   r   r   Nc                    s   t    t }t||||||||d|d< t|||d||	|tj||
|d|d< t|||d||	|tj||
|d|d< t|| _d S )N)r5   r6   r7   r8   r   r9   r:   r;   ZMBconvr   )r5   r\   r   r   r   r   r9   r:   r   r   r;   Zwindow_attentionr   Zgrid_attention)	rC   rD   r   r3   r   r   r   rF   rK   )rL   r5   r6   r8   r7   r   r:   r9   r\   r   r   r   r;   r   r   rK   rM   r    r!   rD     sN   



zMaxVitLayer.__init__rO   c                 C   s   |  |}|S z
        Args:
            x (Tensor): Input tensor of shape (B, C, H, W).
        Returns:
            Tensor: Output tensor of shape (B, C, H, W).
        rK   )rL   rO   r    r    r!   rR     s   
zMaxVitLayer.forward)rS   rT   rU   rV   rI   rW   r   r   rX   r   rD   r	   rR   rY   r    r    rM   r!   r     sD    	

Ar   c                       s   e Zd ZdZdedededededejf dedejf d	ed
edededede	eef dede
e ddf fddZdedefddZ  ZS )MaxVitBlocka(  
    A MaxVit block consisting of `n_layers` MaxVit layers.

     Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        expansion_ratio (float): Expansion ratio in the bottleneck.
        squeeze_ratio (float): Squeeze ratio in the SE Layer.
        activation_layer (Callable[..., nn.Module]): Activation function.
        norm_layer (Callable[..., nn.Module]): Normalization function.
        head_dim (int): Dimension of the attention heads.
        mlp_ratio (int): Ratio of the MLP layer.
        mlp_dropout (float): Dropout probability for the MLP layer.
        attention_dropout (float): Dropout probability for the attention layer.
        p_stochastic_dropout (float): Probability of stochastic depth.
        partition_size (int): Size of the partitions.
        input_grid_size (Tuple[int, int]): Size of the input feature grid.
        n_layers (int): Number of layers in the block.
        p_stochastic (List[float]): List of probabilities for stochastic depth for each layer.
    r5   r6   r8   r7   r:   .r9   r\   r   r   r   r   input_grid_sizen_layersp_stochasticr   Nc                    s   t    t||kstd| d| dt | _t|dddd| _t	|D ]+\}}|dkr2dnd}|  jt
|dkr>|n||||||||||	|
|| j|d	g7  _q(d S )
Nz'p_stochastic must have length n_layers=z, got p_stochastic=.r$   r   r   r=   r   )r5   r6   r8   r7   r   r:   r9   r\   r   r   r   r   r   r;   )rC   rD   lenra   r   
ModuleListrK   r"   r   	enumerater   )rL   r5   r6   r8   r7   r:   r9   r\   r   r   r   r   r   r   r   idxr   r   rM   r    r!   rD     s4   


zMaxVitBlock.__init__rO   c                 C   s   | j D ]}||}q|S r   r   )rL   rO   layerr    r    r!   rR   -  s   

zMaxVitBlock.forward)rS   rT   rU   rV   rI   rW   r   r   rX   r   listrD   r	   rR   rY   r    r    rM   r!   r     sD    	
3r   c                !       s   e Zd ZdZdejddddddfdeeef ded	ed
ee dee dede	de
edejf  dedejf de	de	dede	de	deddf  fddZdedefddZdd Z  ZS )r   ay  
    Implements MaxVit Transformer from the `MaxViT: Multi-Axis Vision Transformer <https://arxiv.org/abs/2204.01697>`_ paper.
    Args:
        input_size (Tuple[int, int]): Size of the input image.
        stem_channels (int): Number of channels in the stem.
        partition_size (int): Size of the partitions.
        block_channels (List[int]): Number of channels in each block.
        block_layers (List[int]): Number of layers in each block.
        stochastic_depth_prob (float): Probability of stochastic depth. Expands to a list of probabilities for each layer that scales linearly to the specified value.
        squeeze_ratio (float): Squeeze ratio in the SE Layer. Default: 0.25.
        expansion_ratio (float): Expansion ratio in the MBConv bottleneck. Default: 4.
        norm_layer (Callable[..., nn.Module]): Normalization function. Default: None (setting to None will produce a `BatchNorm2d(eps=1e-3, momentum=0.01)`).
        activation_layer (Callable[..., nn.Module]): Activation function Default: nn.GELU.
        head_dim (int): Dimension of the attention heads.
        mlp_ratio (int): Expansion ratio of the MLP layer. Default: 4.
        mlp_dropout (float): Dropout probability for the MLP layer. Default: 0.0.
        attention_dropout (float): Dropout probability for the attention layer. Default: 0.0.
        num_classes (int): Number of classes. Default: 1000.
    Ng      ?rq   r4   i  r   stem_channelsr   block_channelsblock_layersr\   stochastic_depth_probr:   .r9   r8   r7   r   r   r   num_classesr   c                    s  t    t|  d}|d u rttjddd}t|t|}t|D ]%\}}|d | dks6|d | dkrGt	d| d| d	| d
| d	q"t
t||dd||	dd dt||ddd d dd| _t|dddd}|| _t | _|g|d d  }|}td|t| }d}t|||D ]+\}}}| jt|||
|||	|||||||||||  d | jd j}||7 }qt
tdt t|d t|d |d t tj|d |dd| _|   d S )Nr$   gMbP?g{Gz?)epsZmomentumr   r   zInput size z
 of block z$ is not divisible by partition size zx. Consider changing the partition size or the input size.
Current configuration yields the following block input sizes: r   r   F)r   r:   r9   r<   rA   T)r   r:   r9   r<   r=   r+   )r5   r6   r8   r7   r:   r9   r\   r   r   r   r   r   r   r   )r<   ) rC   rD   r   r   r   BatchNorm2dr(   r   r   ra   rF   r   stemr"   r   r   blocksnpZlinspacer1   tolistzipr&   r   r   ZAdaptiveAvgPool2dZFlattenr   rf   ZTanh
classifier_init_weights)rL   r   r   r   r   r   r\   r   r:   r9   r8   r7   r   r   r   r   Zinput_channelsZblock_input_sizesr   Zblock_input_sizer5   r6   r   Zp_idxZ
in_channelZout_channelZ
num_layersrM   r    r!   rD   N  s   
 


	zMaxVit.__init__rO   c                 C   s,   |  |}| jD ]}||}q| |}|S r   )r   r   r   )rL   rO   blockr    r    r!   rR     s
   



zMaxVit.forwardc                 C   s   |   D ]P}t|tjr"tjj|jdd |jd ur!tj|j qt|tj	r9tj
|jd tj
|jd qt|tjrTtjj|jdd |jd urTtj|j qd S )Nr_   r`   r   r   )modules
isinstancer   rE   rm   Znormal_weightr<   Zzeros_r   Z	constant_rf   )rL   mr    r    r!   r     s   

zMaxVit._init_weights)rS   rT   rU   rV   r   ZGELUr   rI   r   rW   r   r   rX   rD   r	   rR   r   rY   r    r    rM   r!   r   9  sZ    %
	
vr   Fr   r   r   r   r   r\   weightsprogresskwargsc              
   K   s   |d ur(t |dt|jd  |jd d |jd d ksJ t |d|jd  |dd}	td| ||||||	d|}
|d urK|
|j|d	d
 |
S )Nr   
categoriesmin_sizer   r   r      r   )r   r   r   r   r\   r   r   T)r   Z
check_hashr    )r   r   metapopr   Zload_state_dictZget_state_dict)r   r   r   r   r   r\   r   r   r   r   modelr    r    r!   _maxvit  s&    r   c                   @   sH   e Zd Zedeeddejdedddddd	d
idddddZ	e	Z
dS )r   z9https://download.pytorch.org/models/maxvit_t-bc5ab103.pthr   )Z	crop_sizeZresize_sizeinterpolationir   zLhttps://github.com/pytorch/vision/tree/main/references/classification#maxvitzImageNet-1KgT@g|?5.X@)zacc@1zacc@5gZd;@gK7]@zThese weights reproduce closely the results of the paper using a similar training recipe.
            They were trained with a BatchNorm2D momentum of 0.99 instead of the more correct 0.01.)r   Z
num_paramsr   ZrecipeZ_metricsZ_ops
_file_sizeZ_docs)urlZ
transformsr   N)rS   rT   rU   r   r   r   r   ZBICUBICr   IMAGENET1K_V1DEFAULTr    r    r    r!   r     s*    
r   Z
pretrained)r   T)r   r   c                 K   s2   t | } td	dg dg dddd| |d|S )
a  
    Constructs a maxvit_t architecture from
    `MaxViT: Multi-Axis Vision Transformer <https://arxiv.org/abs/2204.01697>`_.

    Args:
        weights (:class:`~torchvision.models.MaxVit_T_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.MaxVit_T_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.maxvit.MaxVit``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/maxvit.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.MaxVit_T_Weights
        :members:
    @   )r         i   )r   r   r   r       g?   )r   r   r   r\   r   r   r   r   Nr    )r   verifyr   )r   r   r   r    r    r!   r     s   
	r   )NF)=rc   collectionsr   collections.abcr   	functoolsr   typingr   r   r   numpyr   r,   Ztorch.nn.functionalr   Z
functionalru   r	   Ztorchvision.models._apir
   r   r   Ztorchvision.models._metar   Ztorchvision.models._utilsr   r   Ztorchvision.ops.miscr   r   Z torchvision.ops.stochastic_depthr   Ztorchvision.transforms._presetsr   r   Ztorchvision.utilsr   __all__r   rI   r"   r   r(   r2   rX   r3   rZ   r   r   r   r   r   r   r   rW   boolr   r   r   r   r    r    r    r!   <module>   sr    .*
WIhaU .

*.