o
    h5                     @   s   d dl Z d dlmZ d dlmZmZmZ d dlZd dlmZ ddl	m
Z
mZ ejjjZG dd dejjZG d	d
 d
ejjZG dd deZG dd deZG dd dejjZG dd dejjZG dd dejjZdS )    N)Sequence)CallableOptionalUnion)Tensor   )_log_api_usage_once_make_ntuplec                       s   e Zd ZdZ	ddedef fddZdeded	ed
e	de
e de
e de
e f fddZdedefddZdefddZ  ZS )FrozenBatchNorm2da!  
    BatchNorm2d where the batch statistics and the affine parameters are fixed

    Args:
        num_features (int): Number of features ``C`` from an expected input of size ``(N, C, H, W)``
        eps (float): a value added to the denominator for numerical stability. Default: 1e-5
    h㈵>num_featuresepsc                    sd   t    t|  || _| dt| | dt| | dt| | dt| d S )Nweightbiasrunning_meanrunning_var)super__init__r   r   Zregister_buffertorchZonesZzeros)selfr   r   	__class__ Z/home/www/facesmatcher.com/frenv_anti/lib/python3.10/site-packages/torchvision/ops/misc.pyr      s   
zFrozenBatchNorm2d.__init__
state_dictprefixlocal_metadatastrictmissing_keysunexpected_keys
error_msgsc           	   	      s2   |d }||v r||= t  ||||||| d S )NZnum_batches_tracked)r   _load_from_state_dict)	r   r   r   r   r   r   r   r    Znum_batches_tracked_keyr   r   r   r!   $   s   
z'FrozenBatchNorm2d._load_from_state_dictxreturnc                 C   sr   | j dddd}| jdddd}| jdddd}| jdddd}||| j   }|||  }|| | S )N   )r   Zreshaper   r   r   r   Zrsqrt)r   r"   wbrvZrmscaler   r   r   r   forward6   s   zFrozenBatchNorm2d.forwardc                 C   s$   | j j d| jjd  d| j dS )N(r   z, eps=))r   __name__r   shaper   )r   r   r   r   __repr__A   s   $zFrozenBatchNorm2d.__repr__)r   )r-   
__module____qualname____doc__intfloatr   dictstrboollistr!   r   r*   r/   __classcell__r   r   r   r   r
      s2    r
   c                       s   e Zd Zddddejjejjdddejjf
dedede	ee
edf f d	e	ee
edf f d
ee	ee
edf ef  dedeedejjf  deedejjf  de	ee
edf f dee dee dedejjf ddf fddZ  ZS )ConvNormActivation   r$   NTin_channelsout_channelskernel_size.stridepaddinggroups
norm_layeractivation_layerdilationinplacer   
conv_layerr#   c              
      s  |d u r<t trt  trd d   }n%t tr tnt }t|t | t fddt|D }|d u rD|d u }||||| ||dg}|d ur\||| |d urt|
d u rfi nd|
i}||di | t j	|  t
|  || _| jtkrtd d S d S )	Nr$   r   c                 3   s(    | ]}| d  d  |  V  qdS )r$   r   Nr   ).0irD   r>   r   r   	<genexpr>]   s   & z.ConvNormActivation.__init__.<locals>.<genexpr>)rD   rA   r   rE   zhDon't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead.r   )
isinstancer3   r   lenr	   tuplerangeappendr   r   r   r=   r   r:   warningswarn)r   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   r   rF   Z	_conv_dimlayersparamsr   rI   r   r   F   sB   


zConvNormActivation.__init__)r-   r0   r1   r   nnBatchNorm2dReLUConv2dr3   r   rM   r   r6   r   Moduler7   r   r9   r   r   r   r   r:   E   sL    	
r:   c                       s   e Zd ZdZddddejjejjdddf	dedede	ee
eef f d	e	ee
eef f d
ee	ee
eef ef  dedeedejjf  deedejjf  de	ee
eef f dee dee ddf fddZ  ZS )Conv2dNormActivationa  
    Configurable block used for Convolution2d-Normalization-Activation blocks.

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
        kernel_size: (int, optional): Size of the convolving kernel. Default: 3
        stride (int, optional): Stride of the convolution. Default: 1
        padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm2d``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.

    r;   r$   NTr<   r=   r>   r?   r@   rA   rB   .rC   rD   rE   r   r#   c                    *   t  |||||||||	|
|tjj d S N)r   r   r   rT   rW   r   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   r   r   r   r   r         zConv2dNormActivation.__init__)r-   r0   r1   r2   r   rT   rU   rV   r3   r   rM   r   r6   r   rX   r7   r   r9   r   r   r   r   rY   ~   sH    	
rY   c                       s   e Zd ZdZddddejjejjdddf	dedede	ee
eeef f d	e	ee
eeef f d
ee	ee
eeef ef  dedeedejjf  deedejjf  de	ee
eeef f dee dee ddf fddZ  ZS )Conv3dNormActivationa  
    Configurable block used for Convolution3d-Normalization-Activation blocks.

    Args:
        in_channels (int): Number of channels in the input video.
        out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
        kernel_size: (int, optional): Size of the convolving kernel. Default: 3
        stride (int, optional): Stride of the convolution. Default: 1
        padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm3d``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
    r;   r$   NTr<   r=   r>   r?   r@   rA   rB   .rC   rD   rE   r   r#   c                    rZ   r[   )r   r   r   rT   ZConv3dr\   r   r   r   r      r]   zConv3dNormActivation.__init__)r-   r0   r1   r2   r   rT   ZBatchNorm3drV   r3   r   rM   r   r6   r   rX   r7   r   r9   r   r   r   r   r^      sH    	
r^   c                       s   e Zd ZdZejjejjfdedede	dejj
f de	dejj
f ddf
 fd	d
ZdedefddZdedefddZ  ZS )SqueezeExcitationaE  
    This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
    Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in eq. 3.

    Args:
        input_channels (int): Number of channels in the input image
        squeeze_channels (int): Number of squeeze channels
        activation (Callable[..., torch.nn.Module], optional): ``delta`` activation. Default: ``torch.nn.ReLU``
        scale_activation (Callable[..., torch.nn.Module]): ``sigma`` activation. Default: ``torch.nn.Sigmoid``
    input_channelssqueeze_channels
activation.scale_activationr#   Nc                    sX   t    t|  tjd| _tj||d| _tj||d| _	| | _
| | _d S )Nr$   )r   r   r   r   rT   ZAdaptiveAvgPool2davgpoolrW   fc1fc2rb   rc   )r   r`   ra   rb   rc   r   r   r   r      s   
zSqueezeExcitation.__init__inputc                 C   s2   |  |}| |}| |}| |}| |S r[   )rd   re   rb   rf   rc   r   rg   r)   r   r   r   _scale   s
   




zSqueezeExcitation._scalec                 C   s   |  |}|| S r[   )ri   rh   r   r   r   r*     s   
zSqueezeExcitation.forward)r-   r0   r1   r2   r   rT   rV   ZSigmoidr3   r   rX   r   r   ri   r*   r9   r   r   r   r   r_      s"    r_   c                       sv   e Zd ZdZdejjdddfdedee de	e
dejjf  d	e	e
dejjf  d
e	e dedef fddZ  ZS )MLPa  This block implements the multi-layer perceptron (MLP) module.

    Args:
        in_channels (int): Number of channels of the input
        hidden_channels (List[int]): List of the hidden channel dimensions
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the linear layer. If ``None`` this layer won't be used. Default: ``None``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the linear layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
        inplace (bool, optional): Parameter for the activation layer, which can optionally do the operation in-place.
            Default is ``None``, which uses the respective default values of the ``activation_layer`` and Dropout layer.
        bias (bool): Whether to use bias in the linear layer. Default ``True``
        dropout (float): The probability for the dropout layer. Default: 0.0
    NTg        r<   hidden_channelsrB   .rC   rE   r   dropoutc                    s   |d u ri nd|i}g }	|}
|d d D ]2}|	 tjj|
||d |d ur-|	 || |	 |di | |	 tjj|fi | |}
q|	 tjj|
|d |d |	 tjj|fi | t j|	  t|  d S )NrE   r%   )r   r   )rO   r   rT   ZLinearZDropoutr   r   r   )r   r<   rk   rB   rC   rE   r   rl   rS   rR   Zin_dimZ
hidden_dimr   r   r   r     s   zMLP.__init__)r-   r0   r1   r2   r   rT   rV   r3   r8   r   r   rX   r7   r4   r   r9   r   r   r   r   rj     s,    rj   c                       s<   e Zd ZdZdee f fddZdedefddZ  Z	S )	PermutezThis module returns a view of the tensor input with its dimensions permuted.

    Args:
        dims (List[int]): The desired ordering of dimensions
    dimsc                    s   t    || _d S r[   )r   r   rn   )r   rn   r   r   r   r   <  s   

zPermute.__init__r"   r#   c                 C   s   t || jS r[   )r   Zpermutern   )r   r"   r   r   r   r*   @  s   zPermute.forward)
r-   r0   r1   r2   r8   r3   r   r   r*   r9   r   r   r   r   rm   5  s    rm   )rP   collections.abcr   typingr   r   r   r   r   utilsr   r	   rT   Z
functionalZinterpolaterX   r
   Z
Sequentialr:   rY   r^   r_   rj   rm   r   r   r   r   <module>   s    
7921'-