o
    h"                     @   s   d dl mZmZ d dlZd dlmZ d dlmZ d dlmZ d dl	m
Z
 d dlmZmZ d dlmZ d d	lmZ d
gZG dd
 d
eZdS )    )OptionalUnionN)Tensor)constraints)Distribution)Independent)ComposeTransform	Transform)_sum_rightmost)_sizeTransformedDistributionc                	       s   e Zd ZU dZi Zeeejf e	d< 	dde
deeee f dee ddf fdd	Zd fd
d	Zejdddd ZedefddZe fddZe fdedefddZdd Zdd Zdd Zdd Z  Z S ) r   a  
    Extension of the Distribution class, which applies a sequence of Transforms
    to a base distribution.  Let f be the composition of transforms applied::

        X ~ BaseDistribution
        Y = f(X) ~ TransformedDistribution(BaseDistribution, f)
        log p(Y) = log p(X) + log |det (dX/dY)|

    Note that the ``.event_shape`` of a :class:`TransformedDistribution` is the
    maximum shape of its base distribution and its transforms, since transforms
    can introduce correlations among events.

    An example for the usage of :class:`TransformedDistribution` would be::

        # Building a Logistic Distribution
        # X ~ Uniform(0, 1)
        # f = a + b * logit(X)
        # Y ~ f(X) ~ Logistic(a, b)
        base_distribution = Uniform(0, 1)
        transforms = [SigmoidTransform().inv, AffineTransform(loc=a, scale=b)]
        logistic = TransformedDistribution(base_distribution, transforms)

    For more examples, please look at the implementations of
    :class:`~torch.distributions.gumbel.Gumbel`,
    :class:`~torch.distributions.half_cauchy.HalfCauchy`,
    :class:`~torch.distributions.half_normal.HalfNormal`,
    :class:`~torch.distributions.log_normal.LogNormal`,
    :class:`~torch.distributions.pareto.Pareto`,
    :class:`~torch.distributions.weibull.Weibull`,
    :class:`~torch.distributions.relaxed_bernoulli.RelaxedBernoulli` and
    :class:`~torch.distributions.relaxed_categorical.RelaxedOneHotCategorical`
    arg_constraintsNbase_distribution
transformsvalidate_argsreturnc                    sb  t |tr
|g| _nt |tr tdd |D std|| _ntd| |j|j }t|j}t	| j}t||j
jk rLtd|j
j d| d||}||}||kri|d t||  }	||	}|j
j| }
|
dkrxt||
}|| _|jj|j
j }t|jj|| }t||ksJ t|| }|d | }||d  }t j|||d	 d S )
Nc                 s   s    | ]}t |tV  qd S N)
isinstancer	   ).0t r   r/home/www/facesmatcher.com/frenv_anti/lib/python3.10/site-packages/torch/distributions/transformed_distribution.py	<genexpr>@   s    z3TransformedDistribution.__init__.<locals>.<genexpr>z6transforms must be a Transform or a list of Transformsz0transforms must be a Transform or list, but was z9base_distribution needs to have shape with size at least z
, but got .r   r   )r   r	   r   listall
ValueErrorbatch_shapeevent_shapelenr   domain	event_dimforward_shapeinverse_shapeexpandr   	base_distcodomainmaxsuper__init__)selfr   r   r   Z
base_shapeZbase_event_dim	transformr#   Zexpanded_base_shapebase_batch_shapeZreinterpreted_batch_ndimsZtransform_change_in_event_dimr"   cutr   r   	__class__r   r   r*   5   sV   






z TransformedDistribution.__init__c                    s   |  t|}t|}|| j }t| jD ]}||}q|d t|t| j	j  }| j	
||_	| j|_tt|j|| jdd | j|_|S )NFr   )Z_get_checked_instancer   torchSizer   reversedr   r$   r    r&   r%   r)   r*   _validate_args)r+   r   Z	_instancenewshaper   r-   r/   r   r   r%   n   s   


zTransformedDistribution.expandF)Zis_discretec                 C   sF   | j s| jjS | j d j}t| j|jkr!t|t| j|j }|S )N)	r   r&   supportr'   r    r   r"   r   Zindependent)r+   r8   r   r   r   r8   }   s   zTransformedDistribution.supportc                 C   s   | j jS r   )r&   has_rsample)r+   r   r   r   r9      s   z#TransformedDistribution.has_rsamplec                 C   sP   t   | j|}| jD ]}||}q|W  d   S 1 s!w   Y  dS )a  
        Generates a sample_shape shaped sample or sample_shape shaped batch of
        samples if the distribution parameters are batched. Samples first from
        base distribution and applies `transform()` for every transform in the
        list.
        N)r1   Zno_gradr&   sampler   r+   sample_shapexr,   r   r   r   r:      s   


$zTransformedDistribution.sampler<   c                 C   s$   | j |}| jD ]}||}q	|S )a$  
        Generates a sample_shape shaped reparameterized sample or sample_shape
        shaped batch of reparameterized samples if the distribution parameters
        are batched. Samples first from base distribution and applies
        `transform()` for every transform in the list.
        )r&   rsampler   r;   r   r   r   r>      s   

zTransformedDistribution.rsamplec                 C   s   | j r| | t| j}d}|}t| jD ]"}||}||jj|j	j 7 }|t
|||||jj  }|}q|t
| j||t| jj  }|S )z
        Scores the sample by inverting the transform(s) and computing the score
        using the score of the base distribution and the log abs det jacobian.
        g        )r4   _validate_sampler    r   r3   r   invr!   r"   r'   r
   Zlog_abs_det_jacobianr&   log_prob)r+   valuer"   rA   yr,   r=   r   r   r   rA      s"   




z TransformedDistribution.log_probc                 C   s@   d}| j D ]}||j }qt|tr|dkr|S ||d  d S )zu
        This conditionally flips ``value -> 1-value`` to ensure :meth:`cdf` is
        monotone increasing.
           g      ?)r   signr   int)r+   rB   rE   r,   r   r   r   _monotonize_cdf   s   
z'TransformedDistribution._monotonize_cdfc                 C   sL   | j ddd D ]}||}q| jr| j| | j|}| |}|S )z
        Computes the cumulative distribution function by inverting the
        transform(s) and computing the score of the base distribution.
        Nr7   )r   r@   r4   r&   r?   cdfrG   r+   rB   r,   r   r   r   rH      s   
zTransformedDistribution.cdfc                 C   s.   |  |}| j|}| jD ]}||}q|S )z
        Computes the inverse cumulative distribution function using
        transform(s) and computing the score of the base distribution.
        )rG   r&   icdfr   rI   r   r   r   rJ      s
   


zTransformedDistribution.icdfr   )!__name__
__module____qualname____doc__r   dictstrr   
Constraint__annotations__r   r   r	   r   r   boolr*   r%   Zdependent_propertyr8   propertyr9   r1   r2   r:   r   r   r>   rA   rG   rH   rJ   __classcell__r   r   r/   r   r      s0   
 !9


)typingr   r   r1   r   Ztorch.distributionsr   Z torch.distributions.distributionr   Ztorch.distributions.independentr   Ztorch.distributions.transformsr   r	   Ztorch.distributions.utilsr
   Ztorch.typesr   __all__r   r   r   r   r   <module>   s   