o
    hh                     @  sl   d dl mZ d dlZd dlmZ d dlmZmZ ddlm	Z	 ddl
mZmZ ddlmZ G d	d
 d
eZdS )    )annotationsN)Path)AnyCallable   )default_loader)download_and_extract_archiveverify_str_arg)VisionDatasetc                      s\   e Zd ZdZdZdddddefd" fddZd#ddZd$ddZd%ddZ	d&d d!Z
  ZS )'FGVCAircrafta2  `FGVC Aircraft <https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/>`_ Dataset.

    The dataset contains 10,000 images of aircraft, with 100 images for each of 100
    different aircraft model variants, most of which are airplanes.
    Aircraft models are organized in a three-levels hierarchy. The three levels, from
    finer to coarser, are:

    - ``variant``, e.g. Boeing 737-700. A variant collapses all the models that are visually
        indistinguishable into one class. The dataset comprises 100 different variants.
    - ``family``, e.g. Boeing 737. The dataset comprises 70 different families.
    - ``manufacturer``, e.g. Boeing. The dataset comprises 30 different manufacturers.

    Args:
        root (str or ``pathlib.Path``): Root directory of the FGVC Aircraft dataset.
        split (string, optional): The dataset split, supports ``train``, ``val``,
            ``trainval`` and ``test``.
        annotation_level (str, optional): The annotation level, supports ``variant``,
            ``family`` and ``manufacturer``.
        transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader,
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If True, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        loader (callable, optional): A function to load an image given its path.
            By default, it uses PIL as its image loader, but users could also pass in
            ``torchvision.io.decode_image`` for decoding image data into tensors directly.
    zWhttps://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gztrainvalvariantNFroot
str | Pathsplitstrannotation_level	transformCallable | Nonetarget_transformdownloadboolloaderCallable[[str], Any]returnNonec              	     s  t  j|||d t|dd| _t|dd| _tj| jd| _	|r&| 
  |  s.tdtj| j	dd	d
dd| j }t|}	dd |	D | _W d    n1 sUw   Y  tt| jtt| j| _tj| j	dd}
tj| j	dd| j d| j d}g | _g | _t|.}	|	D ]#}| dd\}}| jtj|
| d | j| j|  qW d    n1 sw   Y  || _d S )N)r   r   r   )trainvalr   testr   )r   familyZmanufacturerzfgvc-aircraft-2013bz;Dataset not found. You can use download=True to download itdatazvariants.txtzfamilies.txtzmanufacturers.txtc                 S  s   g | ]}|  qS  )strip).0liner!   r!   h/home/www/facesmatcher.com/frenv_anti/lib/python3.10/site-packages/torchvision/datasets/fgvc_aircraft.py
<listcomp>O   s    z)FGVCAircraft.__init__.<locals>.<listcomp>ZimagesZimages__z.txt r   z.jpg)super__init__r	   _splitZ_annotation_levelospathjoinr   
_data_path	_download_check_existsRuntimeErroropenclassesdictziprangelenZclass_to_idx_image_files_labelsr"   r   appendr   )selfr   r   r   r   r   r   r   Zannotation_filefZimage_data_folderZlabels_filer$   Z
image_nameZ
label_name	__class__r!   r%   r*   .   sH   

	$

zFGVCAircraft.__init__intc                 C  s
   t | jS N)r8   r9   r<   r!   r!   r%   __len__`   s   
zFGVCAircraft.__len__idxtuple[Any, Any]c                 C  sH   | j | | j| }}| |}| jr| |}| jr | |}||fS rA   )r9   r:   r   r   r   )r<   rD   Z
image_filelabelimager!   r!   r%   __getitem__c   s   


zFGVCAircraft.__getitem__c                 C  s   |   rdS t| j| j dS )zW
        Download the FGVC Aircraft dataset archive and extract it under root.
        N)r1   r   _URLr   rB   r!   r!   r%   r0   o   s   zFGVCAircraft._downloadc                 C  s   t j| jot j| jS rA   )r,   r-   existsr/   isdirrB   r!   r!   r%   r1   w   s   zFGVCAircraft._check_exists)r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   )r   r@   )rD   r@   r   rE   )r   r   )r   r   )__name__
__module____qualname____doc__rI   r   r*   rC   rH   r0   r1   __classcell__r!   r!   r>   r%   r      s    
2

r   )
__future__r   r,   pathlibr   typingr   r   folderr   utilsr   r	   Zvisionr
   r   r!   r!   r!   r%   <module>   s    